Literature

Activity of Broad-Spectrum T Cells as Treatment for AdV, EBV, CMV, BKV, and HHV6 Infections after HSCT

It remains difficult to treat the multiplicity of distinct viral infections that afflict immunocompromised patients. Adoptive transfer of virus-specific T cells (VSTs) can be safe and effective, but such cells have been complex to prepare and limited in antiviral range. We now demonstrate the feasibility and clinical utility of rapidly generated single-culture VSTs that recognize 12 immunogenic antigens from five viruses (Epstein-Barr virus, adenovirus, cytomegalovirus, BK virus, and human herpesvirus 6) that frequently cause disease in immunocompromised patients. When administered to 11 recipients of allogeneic transplants, 8 of whom had up to four active infections with the targeted viruses, these VSTs proved safe in all subjects and produced an overall 94% virological and clinical response rate that was sustained long-term.

Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation

Virus-specific T cell (VST) lines could provide useful antiviral prophylaxis and treatment of immune-deficient patients if it were possible to avoid the necessity of generating a separate line for each patient, often on an emergency basis. We prepared a bank of 32 virus-specific lines from individuals with common HLA polymorphisms who were immune to Epstein-Barr virus (EBV), cytomegalovirus, or adenovirus. A total of 18 lines were administered to 50 patients with severe, refractory illness because of infection with one of these viruses after hematopoietic stem cell transplant. The cumulative rates of complete or partial responses at 6 weeks postinfusion were 74.0% (95% CI, 58.5%-89.5%) for the entire group (n = 50), 73.9% (95% CI, 51.2% -96.6%) for cytomegalovirus (n = 23), 77.8% for adenovirus (n = 18), and 66.7% (95% CI, 36.9%-96.5%) for EBV (n = 9). Only 4 responders had a recurrence or progression. There were no immediate infusion-related adverse events, and de novo graft-versus-host disease developed in only 2 patients. Despite the disparity between the lines and their recipients, the mean frequency of VSTs increased significantly postinfusion, coincident with striking decreases in viral DNA and resolution of clinical symptoms. The use of banked third-party VSTs is a feasible and safe approach to rapidly treat severe or intractable viral infections after stem cell transplantation.

Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections

Severe and fatal viral infections remain common after hematopoietic stem cell transplantation. Adoptive transfer of cytotoxic T lymphocytes (CTLs) specific for Epstein-Barr virus (EBV), cytomegalovirus (CMV), and adenoviral antigens can treat infections that are impervious to conventional therapies, but broader implementation and extension to additional viruses is limited by competition between virus-derived antigens and time-consuming and laborious manufacturing procedures. We now describe a system that rapidly generates a single preparation of polyclonal (CD4(+) and CD8(+)) CTLs that is consistently specific for 15 immunodominant and subdominant antigens derived from 7 viruses (EBV, CMV, Adenovirus (Adv), BK, human herpes virus (HHV)-6, respiratory syncytial virus (RSV), and Influenza) that commonly cause post-transplant morbidity and mortality. CTLs can be rapidly produced (10 days) by a single stimulation of donor peripheral blood mononuclear cells (PBMCs) with a peptide mixture spanning the target antigens in the presence of the potent prosurvival cytokines interleukin-4 (IL4) and IL7. This approach reduces the impact of antigenic competition with a consequent increase in the antigenic repertoire and frequency of virus-specific T cells. Our approach can be readily introduced into clinical practice and should be a cost-effective alternative to common antiviral prophylactic agents for allogeneic hematopoietic stem cell transplant (HSCT) recipients.

Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex)

The clinical manufacture of antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy is limited by the complexity and time required to produce large numbers with the desired function and specificity. The culture conditions required are rigorous, and in some cases only achieved in 2-cm wells in which cell growth is limited by gas exchange, nutrients, and waste accumulation. Bioreactors developed to overcome these issues tend to be complex, expensive, and not always conducive to CTL growth. We observed that antigen-specific CTLs undergo 7 to 10 divisions poststimulation. However, the expected CTL numbers were achieved only in the first week of culture. By recreating the culture conditions present during this first week-low frequency of antigen-specific T cells and high frequency of feeder cells-we were able to increase CTL expansion to expected levels that could be sustained for several weeks without affecting phenotype or function. However, the number of 24-well plates needed was excessive and cultures required frequent media changes, increasing complexity and manufacturing costs. Therefore, we evaluated novel gas-permeable culture devices (G-Rex) with a silicone membrane at the base allowing gas exchange to occur uninhibited by the depth of the medium above. This system effectively supports the expansion of CTL and actually increases output by up to 20-fold while decreasing the required technician time. Importantly, this amplified cell expansion is not because of more cell divisions but because of reduced cell death. This bioprocess optimization increased T-cell output while decreasing the complexity and cost of CTL manufacture, making cell therapy more accessible.

Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals

Immunocompromised individuals are at high risk for life-threatening diseases, especially those caused by cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus. Conventional therapeutics are primarily active only against CMV, and resistance is frequent. Adoptive transfer of polyclonal cytotoxic T lymphocytes (CTLs) specific for CMV or EBV seems promising, but it is unclear whether this strategy can be extended to adenovirus, which comprises many serotypes. In addition, the preparation of a specific CTL line for each virus in every eligible individual would be impractical. Here we describe genetic modification of antigen-presenting cell lines to facilitate the production of CD4(+) and CD8(+) T lymphocytes specific for CMV, EBV and several serotypes of adenovirus from a single cell culture. When administered to immunocompromised individuals, the single T lymphocyte line expands into multiple discrete virus-specific populations that supply clinically measurable antiviral activity. Monoculture-derived multispecific CTL infusion could provide a safe and efficient means to restore virus-specific immunity in the immunocompromised host.

Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation

Reactivation of Epstein-Barr virus (EBV) after bone-marrow transplantation leads in many cases to lymphoproliferative disease that responds poorly to standard therapy and is usually fatal. To prevent or control this complication, we prepared EBV-specific cytotoxic T-lymphocyte (CTL) lines from donor leucocytes and infused them into ten allograft recipients. Three of the patients had shown signs of EBV reactivation, with or without overt lymphoproliferation, and the others received CTL infusions as prophylaxis. No patient developed any complication that could be attributed to the CTL infusions. In the three patients with EBV reactivation, EBV DNA concentrations (measured by semiquantitative polymerase chain reaction [PCR]), which had increased 1000-fold or more, returned to the control range within 3-4 weeks of immunotherapy. The most striking consequence was the resolution of immunoblastic lymphoma in a 17-year-old patient who received four CTL infusions (two 1 x 10(7)/m2 and two 5 x 10(7)/m2). Because the CTL had been genetically marked before infusion, we were able to show by PCR analysis that they persisted for 10 weeks after administration. EBV-specific donor-type T-cell lines seem to offer safe and effective therapy for control of EBV-associated lymphoproliferation.